skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Maréchal, Manuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Proton‐exchange membrane fuel cell vehicles offer a low‐carbon alternative to traditional oil fuel vehicles, but their performances still need improvement to be competitive. Raising their operating temperature to 120 °C will enhance their efficiency but is currently unfeasible due to the poor mechanical properties at high temperatures of the state‐of‐the‐art proton‐exchange membranes consisting of perfluorosulfonic acid (PFSA) ionomers. To address this issue, xx designed composite membranes made of two networks: a mat of hybrid fibers to maintain the mechanical properties filled with a matrix of PFSA‐based ionomer to ensure the proton conductivity. The hybrid fibers obtained by electrospinning are composed of intermixed domains of sulfonated silica and a fluorinated polymer. The inter‐fiber porosity is then filled with a PFSA ionomer to obtain dense composite membranes with a controlled fibers‐to‐ionomer ratio. At 80 °C, these obtained composite membranes show comparable performances to a pure PFSA commercial membrane. At 120 °C however, the tensile strength of the PFSA membrane drastically drop down to 0.2 MPa, while it is maintained at 7.0 MPa for the composite membrane. In addition, the composite membrane shows a good conductivity of up to 0.1 S cm −1 at 120 °C/90% RH, which increases with the ionomer content. 
    more » « less
  2. null (Ed.)